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Abstract: Using the Lyapunov method, we find analytically the equations of wave surface of capillary waves in
fluid of infinite depth and compare them to the solution, obtained by Crapper. We prove analytically the stability
of Crapper waves with respect to symmetric and non-symmetric disturbances.
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1 Introduction

In [1] the exact solution of the problem of the po-
tential plane-parallel flow of an ideal fluid in the do-
main −∞ < x < ∞, −∞ < y < η(kx) was
constructed, where the function η(kx) is periodic
η(kx) = η(kx + 2π), the wave number k is related
to the wave length as follows λ = 2π/k. The Laplace
condition p − p0 + σ/r = 0 is satisfied on the wave
surface η(kx), where r is the curvature radius of the
cylinder, p and p0 are the fluid pressure inside and out-
side the cylinder, σ is the surface tension coefficient.
Crapper found the exact solution, but used numeri-
cal methods to prove it. The solution was expressed
through elliptical functions.

Later Kinnersley extented the Crapper waves to
the case of finite depth [2], and Crowdy studied the
Crapper waves, using conformal maps [3]. The Crap-
per wave stability was studied in [4]. The infinite
chain of linear differential equations for perturbations
was obtained and the eigenvalues of these equations
were studied. Such a solution requires an excessively
large number of computations. The Lagrange method
of generalized coordinates may be proposed as an al-
ternative. An analogic method was used in [5] to study
the stability of the McLeod plane-parallel flow [6],
which models the motion of a drop with surface ten-
sion.

The direct Lyapunov method reduces the stabil-
ity problem to the efficient potential energy minimum
condition. The potential energy minimum condition
is used to prove the stability of the stationary motion
of capillary waves in the frames of the weakened Lya-
punov stability definition [7].

In this work we present the analytic solution for

Figure 1: Mapping of one wave period on a disc.

the capillary waves stability problem (earlier numer-
ical methods were used). We use the second varia-
tion of the Lyapunov function to prove the stability of
capillary waves with respect to symmetric and non-
symmetric disturbances.

2 The Hamilton Principle and the
Euler-Lagrange equation

To describe the dynamics of capillary waves, we use
the wave parametrization, introduced by Stokes [8, 9].
We seek the conformal mapping of the disc |ζ| < 1 of
the complex plane ζ with a cut on the positive part of
abscissa (see Fig. 1) on the domain of one wave period
on the complex plane z = x+iy in the following form

z(ζ) =
λ

2π

[
i ln ζ +

∞∑
n=1

znζ
n

]
. (1)

The circle ζ = eiγ corresponds to the surface
of the wave z = xs + iη. We consider the real
and imaginary parts of the Laurent series coefficients
zn = xn + iyn, n = 1, 2, . . . to be the general-
izaed coordinates of the wave qi, i = 1, 2, . . .. The
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motion equations will be the Lagrange equations with
the Lagrange function L, which equals the difference
between the kinetic and the potential wave energy
L = Ekin − Epot.

3 Lyapunov Function

The kinetic energy of the wave is the quadratic func-
tion of generalized velocities ẋ0, q̇i, i = 1, 2, . . .,
where x0 is the cyclic coordinate that determines the
horizontal movement of the wave, ẋ0 – the wave prop-
agation velocity.

The summands in the kinetic energy may be sep-
arated into three groups: quadratic in ẋ0, linear in x0

and independent of ẋ0

Ekin = 1
2Mẋ2

0 +M1ẋ0 +M2 =

= (Mẋ0+M1)2

2M +M∗ ,

M∗ = M2 −
M2

1
2M .

(2)

Here M is independent of velocities, M1 and M2

are the linear and quadratic function of velocities q̇i.
As Ekin is positively definite, then M∗ is also a posi-
tively definite quadratic form of q̇i.

Suppose that the system of Lagrange equations
has a stationary solution, for which

ẋ0 = u, q̇i = 0, i = 1, 2, . . . .

In this solution the surface of the wave moves with
velocity u, without changing its form. If one considers
now the disturbed motion of the wave, the momentum
conservation law holds

∂Ekin

∂ẋ0
= Mẋ0 +M1 = M0u ,

whereM is the function of generalized coordinates qi,
M0 is the value of function M at the stationary point
qi = q0

i , i = 1, 2, . . .. Thus, using 2, we write the
energy conservation law as

(M0u)2

2M
+ Epot +M∗ = E .

For stationary motion M∗ = 0 and, thus, the en-
ergy value is

(M0u)

2
+ E0

pot = E0 ,

where E0
pot is the value of potential energy at a sta-

tionary point. The function E is a Lyapunov function

if it is positively definite. As M∗ is positively definite,
we consider only the functional

U =
(M0u)2

2M
+ Epot ,

If the stationary point is the minimum of U , the Lya-
punov Theorem implies that the stationary motion is
stable.

4 Kinetic and Potential Energy of
Capillary Waves

Consider the system of coordinates in which the fluid
is at rest at infinity. The kinetic energy of one pe-
riod of the stationary wave in this system is expressed
through the Stokes coefficients yn as follows [10]

Ekin = 1
2Mẋ2

0, M = ρλ2

2π
S
2 ,

S =
∞∑
n=1

n(x2
n + y2

n) .

(3)

The capillary potential energy is proportional to
the arc length l of one wave period

Epot = σl,

where σ is the surface tension coefficient. On the
complex plane ζ the arc length is calculated as follows

l =

∮
ds =

∮ ∣∣∣∣dzdζ
∣∣∣∣ dζiζ , (4)

where the integral of the differential of the arc
length ds is taken along the circle |ζ| = 1.

The Stokes coefficients are not very suitable for
arc length calculation l.

So, an analytical function, expressed through pa-
rameters qi, is introduced

Q(ζ) = 1 +
∞∑
i=1

qiζ
i . (5)

This function is found using the equality

dz
dζ = λ

2π
i
ζQ

2(ζ) ,

∣∣∣dzdζ ∣∣∣ = λ
2πQ(ζ)Q̄(1/ζ) ,

ζ = eiγ .

(6)

Substituting (6) in (4), the ark length can be written as
an integral of this function using the Residue Theorem

l =
λ

2π

∮
Q(ζ)Q(1/ζ)

dζ

iζ
= λ

(
1 +

∞∑
n=1

|qn|2
)

.
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From (1) and (6) we deduce that

1 +
∞∑
k=1

k zki ζ
k = Q2(ζ) =

= 1 + 2
∞∑
k=1

qkζ
k +

∞∑
k=2

ζk
k−1∑
n=1

qnqk−n

and, therefore

z1 = 2iq1 ,

kzk = 2iqk + i
k−1∑
n=1

qnqk−n, k = 2, 3, . . .

(7)

Using substitution

M = ρ
λ2

2π

S

2
, u2 = 2π

σ

ρλ

c2

2π
, l =

λ

2π
l̄ ,

the Lyapunov function can be expressed in the dimen-
sionless form as follows

U = σ λ
2π Ū , Ū =

S2
0

4S c
2 + l̄ ,

l̄ = l
λ = 1 +

∞∑
k=1
|qn|2 ,

(8)

where Ū and l̄ is a dimensionless Lyapunov function
and the arc length of one wave period and c is the
dimensionless wave velocity.

The assertion that the first variation of Ū equals
zero allows us to find the parameters qn of the wave
and its propagation velocity c.

5 Stationary Capillary Waves

Let us show that he solution of the variational equation
δŪ = 0 may be presented as follows

qi = 2bi , (9)

where b is a parameter of a family of solutions. To
prove this we consider small disturbances of coordi-
nates with respect to stationary values

qn = 2bn + ε(ξn + iηn), n = 1, 2, . . . . (10)

We substitute them into function l̄ (8) and expand by
parameter ε

l̄ = 1 +
∞∑
k=1

(
(2bn + εξn)2 + ε2η2

n

)
=

= 1 + εδl̄ + ε2δ2 l̄ ,

(11)

where δl̄ and δ2 l̄ are the first and second variation of
l̄.

Substituting (10) in (11) and separating the real
and imaginary parts zn = xn + iyn, we will find the
expansion for the Stokes coefficients

xk = −2ε

k

(
ηk + 2

k−1∑
n=1

bnηk−n

)
, k = 1, 2, . . .

yk = 4bk +
2ε

k

(
ξk + 2

k−1∑
n=1

bnξk−n

)
+

+
ε2

k

k−1∑
n=1

(ξk−nξn − ηk−nηn) .

(12)
Substituting these expression in (3), we obtain the

expansion by parameter ε for the functional S

S = S0 + εδS + ε2δ2S , (13)

where δS and δ2S are the first and second variation of
S.

Substituting expansions (11) an (13) in functional
(8) we obtain the expansion

Ū = U0 + εδU + ε2δ2U , (14)

The stationary solution is found using the fact that
the first variation equals zero

δŪ = −1
4c

2δS + δl̄ = 0 ,

δl̄ = dl̄
dε

∣∣∣
ε=0

= 4Σ1,
∑
1

=
∞∑
k=1

bkξk ,

δS =
∞∑
k=1

8bkδ(k yk) = 16(Σ1 + 2Σ2) ,

Σ2 =
∞∑
k=1

bk
k−1∑
n=1

bnδqk−n .

(15)

The double sum Σ2 may be modified by changing
the order of summation

Σ2 =
∞∑
n=1

bn
∞∑

k=n+1
bkδqk−n =

=
∞∑
n=1

b2n
∞∑
k1=1

bk1δqk1 = b2

1−b2 Σ1 .

From this we find

δS = 16
1 + b2

1− b2
Σ1
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Substituting δl̄ and δS in equation (15), we obtain the
equality

−c24

(
1 + b2

1− b2

)
Σ1 + 4Σ1 = 0 ,

from which we find the wave velocity

c2 =
1− b2

1 + b2
. (16)

Let us show that formulas (9) and (16) determine the
wave found in [1]. We substitute (9) in function (5)

Q(ζ) = 1 + 2
bζ

1− bζ
, Q2(ζ) =

(
1 + bζ

1− bζ

)2

Thus, by integrating equation (6) we find the

z(ζ) =
λ

2π

(
i ln ζ − 4

1− bζ
− 4i

)
(17)

The parameter bmay be expressed through the dimen-
sionless amplitude a, which is defined as

λ
2πa = 1

2 (z(−i)− z(i)) =

= λ
2π

1
2

(
4

1−bi −
4

1+bi

)
.

Thus we find the connection between the amplitude
and parameter b

a =
4b

1− b2
, b =

√
4 + a2 − 2

a

We obtain the parametric equation of the surface
of the wave from (17) for z = x+ iy, ζ = eiα

x = − λ

2π

(
α+

4b sinα

1− 2b cosα+ b2

)
,

y =
λ

2π

(
4(1− b cosα)

1− 2b cosα+ b2
− 4

)
.

These are the same expressions for x and y that
were obtained by Crapper. Therefore, a new deduc-
tion method for the known exact solution for the cap-
illary wave [1] is presented. The values b = b0 =
0.454, a = 2.280 corresponds to the maximum wave
development. In Fig. 2 the graphs of waves with val-
ues b := 0.1; 0.3 and maximum wave development
b = 0.454 are presented.

Figure 2: Capillary waves at different values of pa-
rameter b.

6 Second Variation

The second variation

δ2Ū =
1

2

d2Ū

dε2

∣∣∣
ε=0

is the quadratic form of variations ξi, ηi, i = 1, 2, . . ..
It is expressed through the first and second variations
of functionals S and l̄

δ2Ū =
c2

4

(
(δS)2

S0
− δ2S

)
+ δ2 l̄ ,

S0 =
16b2

(1− b2)2
,

The second variations are calculated with the help of
(3), (8), (10) and (12)

δ2l = 1
2
d2 l̄
dε2

∣∣∣
ε=0

= δ2l1 + δ2l2 ,

δ2l1 =
∞∑
n=1

ξ2
n, δ2l2 =

∞∑
n=1

η2
n ,

δ2S = 1
2
d2S
dε2

∣∣∣
ε=0

= δ2S1 + δ2S2 ,

δ2S1 =
∞∑
k=1

 4
k

(
ξk + 2

k−1∑
n=1

ξnb
k−n

)2

+

+8bk
k−1∑
n=1

ξnξk−n

)
,

δ2S2 =
∞∑
k=1

 4
k

(
ηk + 2

k−1∑
n=1

bnηk−n

)2

−

−8bk
k−1∑
n=1

ηnηk−n

)
.
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The variables ξn and ηn of the second variation
δ2Ū may be separated and the second variation δ2Ū
may be presented as the sum of two quadratic forms
δ2Ū = δ2Ū1(ξ)+δ2Ū2(η). The first δ2Ū1(ξ) depends
only on ξ and is expressed through δ2S1 and δ2 l̄1,
which depend only on ξ. The second is expressed
through δ2S2 and δ2 l̄2, which depend only on η.

The first quadratic form defines the stability of the
wave with respect to the symmetric disturbances ξn,
the second one defines the stability with respect to the
asymmetric disturbances ηn.

7 Stability of the Wave with respect
to Symmetric Disturbances

Let us first consider the quadratic forms of second
variations for symmetric disturbances

δ2Ū1 =
c2

4

(
(δS)2

S0
− δ2S1

)
+ δ2 l̄1 .

For δ2U1(ξ) the following inequality holds

δ2Ū1 > λmin

∞∑
n=1

(ξn)2 , (18)

where λmin is the smallest eigenvalue of the quadratic
form.

The matrix amn of the quadratic form δ2Ū1 as
b = 0 is diagonal and its diagonal elements are
a11 = 4, ann = (n − 1)/n, n = 2, 3, . . .. The
eigenvalues that correspond to the adjoint linear oper-
ator are λn = ann. The smallest eigenvalue is equal
to the second diagonal element λmin = a22 = 1/2.
For eigenvalues the expansion in powers of b may be
obtained. For the first five eigenvalues the expansions
are

λmin = λ1 = 1
2 −

11
7 b

2 + 2489
343 b

4 ,

λ2 = 2
3 −

2
3b

2 − 38
15b

4,

λ3 = 3
4 −

1
2b

2 + 1
2b

4 ,

λ4 = 4
5 −

2
5b

2 + 2
5b

4 ,

λ5 = 5
6 −

1
3b

2 + 1
3b

4 .

(19)

In Fig. 3 the dependences of the first five eigen-
values on b are presented. The solid lines stand for
the results of numeric calculations, the dashed lines
stand for the expansions in powers of b (19). From the

Figure 3: Eigenvalues (symmetric disturbances).

graphs we see that the greater the index of the eigen-
value is, the better it is approximated by its expan-
sion. In the second variation N = 20 independent
variations δqi, i = 1, 2, . . . 20 are taken into con-
sideration. The smallest eigenvalue λ1(b) decreases
monotonously until it reaches the value λ(b0) =
0.03069 and for N > 15 almost does not depend on
N .

Thus, inequality (18) implies that the second vari-
ation δ2U > 0 is strictly positive for all variations δqi.
By the Lyapunov Theorem the stationary motion of
capillary wave is stable for all possible amplitude val-
ues.

The eigenvalues determine the main oscillation
frequencies near stationary motion.

8 Stability of Capillary Waves with
respect to Non-symmetric Distur-
bances

Consider now the quadratic form of the second varia-
tion for non-symmetric disturbances

δ2Ū2 = −c
2

4
δ2S2 + δ2 l̄2 . (20)

The matrix

bmn =
1

2

∂2(δ2Ū2)

∂ηm∂ηn

for b = 0 is diagonal and bnn = (n − 1)/n, n =
2, 3, . . .. The eigenvalues are λn = bnn.
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The matrix bmn is singular, its determinant equals
zero. This is due to the linear dependence of the gen-
eralized η1, η2, η3, . . ., which is expressed as follows

r =
1

2

∞∑
k=1

kbk
∂(δ2U2)

∂ηk
= 0 . (21)

Let us prove this fact as follows. (20) implies that
the series r in powers of b is the difference between
the series r1 and r2

r1 =
1

2

∞∑
k=1

kbk
∂(δ2l2)

∂ηk
=
∞∑
k=1

kbkηk,

r2 =
1− b2

8(1 + b2)

∞∑
k=1

kbk
∂(δ2S2)

∂ηk
.

It can be checked that in any finite number of coor-
dinates η1, . . . , ηn the difference r1 − r2 is small of
power bn+1

r1 − r2 = O(bn+1) .

The series r1 converges for admissible values of pa-
rameter 0 < b < 0.454 and bounded values of ηk.
The difference of partial sums of r1 and r2 tends to
zero as n→∞. Thus the series r2 also converges and
the difference r1 − r2 equals zero. Thus we complete
the proof.

Equality (21) is equivalent to the fact that the lin-
ear combination of the matrix columns b·n satisfies the
equality

∞∑
k=1

kbkbkm = 0 ,

and, thus, the matrix (bmn) is singular.
This can also be explained by the fact that the

mapping (1) is multivalued. The mapping ζ ′ = eiγ0

maps the circle |ζ| = 1 into itself, therefore the form
of the wave does not change. So, let us put the first
coordinate η1 equal to zero. Then all the other coordi-
nates ηn, n = 2, 3, . . . are independent.

Such choice of coordinates implies that the ma-
trix (bmn) as b = 0 is diagonal bmn = (n− 1)/nδmn,
and the smallest eigenvalue equals the second diago-
nal element λmin = b22 = 1/2. For eigenvalues we
may obtain expansion in powers of b. For the first four
eigenvalues, set by the increasing index numbers, the
expansions are

λmin = λ1 = 1
2 − 3b2 + 23b4 ,

λ2 = 2
3 −

2
3b

2 − 16b4 ,

λ3 = 3
4 −

1
2b

2 + 1
2b

4 ,

λ4 = 4
5 −

2
5b

2 + 2
5b

4 .

(22)

0.1 0.2 0.3 0.4
b0

0.2

0.4

0.6

0.8
Λ

Figure 4: Eigenvalues (non-symmetric distur-
bances).

In Fig. 4 the dependences of the first four eigen-
values on parameter b are presented. The solid lines
stand for the numeric calculations, the dashed ones
for the expansion in powers of b. The smallest eigen-
value λ1(b) monotonously decreases until λ(b0) =
0.181408 and for the number of generalized coordi-
nates N > 15 almost does not depend on N .
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